The relation between amplitudes and critical exponents in finite-size scaling

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L657
(http://iopscience.iop.org/0305-4470/16/17/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The relation between amplitudes and critical exponents in finite-size scaling

Peter Nightingale $\dagger \S$ and Henk Blöte \ddagger
† Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 , USA
\ddagger Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft, PO Box 5046, 2600GA Delft, The Netherlands

Received 25 August 1983

Abstract

The relation between critical exponents and the amplitude of the correlation length divergence at the critical point of two-dimensional systems as a function of finite size is investigated and generalised in two ways. Correlations more general than those of order-order type are included. A form appropriate for anisotropic systems is proposed. We present (a) exact results for the Ising and Gaussian models and (b) numerical results for the symmetric eight-vertex (Baxter), continuous q-state Potts, and continuous N component cubic models.

In this letter we consider two-dimensional lattices, infinite in one direction and of finite size n in the other. Denote by κ_{n} the inverse correlation length, in the sense defined below, of the system in the infinite direction. Suppose that all parameters such as temperature and symmetry-breaking field are set to the critical values of the truly infinite system. If we furthermore assume the case of a continuous transition, then κ_{n} behaves for large n as

$$
\begin{equation*}
\kappa_{n} \simeq A / n . \tag{1}
\end{equation*}
$$

The divergence of the correlation length as shown by this equation is a fundamental feature of a phase transition. In numerical studies in critical phenomena, accurate estimates of critical properties can be derived from the behaviour of the correlation length as a function of system size with the help of finite-size scaling or phenomenological renormalisation (Nightingale 1982 and references therein).

In a study of the two-dimensional $X Y$ model Luck (1982) derived the remarkable relation\|

$$
\begin{equation*}
A=2 \pi x, \tag{2}
\end{equation*}
$$

where x, the anomalous dimension, is the exponent which describes how the spin-spin correlation function g of the infinite system at criticality decays as a function of distance r :

$$
\begin{equation*}
g(r) \sim r^{-2 x} \tag{3}
\end{equation*}
$$

§ Address as from September 1, 1983: Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA.
$\|$ This relation was first demonstrated by J L Pichard and G Farma (1981 J. Phys. C: Solid State Phys. 14 L617) in the case of Anderson localisation.

Using (2), one need only calculate A to find x; no derivatives of κ_{n} are required as in the more usual finite-size scaling procedure. Equation (2) has been numerically verified for the spin-spin correlation function of the q-state Potts model in two dimensions (Derrida and de Seze 1982). Results were published only for two special cases: percolation and the Ising model, i.e. $q=1$ and $q=2$.

Luck's result, equation (2), can be reproduced easily (Thouless 1982) with the spin-wave approximation to the two-dimensional $X Y$ model, i.e. the Gaussian model As it stands (2) applies to isotropic models only. To investigate the effect of anisotropy we explicitly consider the anisotropic Gaussian model. The reduced Hamiltonian (i.e. with a factor $-1 / k_{\mathrm{B}} T$ included) for this model is

$$
\begin{equation*}
\mathscr{H}=-K_{1} \sum^{(1)}\left[\phi(\boldsymbol{r})-\phi\left(\boldsymbol{r}^{\prime}\right)\right]^{2}-K_{2} \sum^{(2)}\left[\phi(\boldsymbol{r})-\phi\left(\boldsymbol{r}^{\prime}\right)\right]^{2} \tag{4}
\end{equation*}
$$

where the first sum is over all nearest-neighbour bonds in one direction and the second sum is the same in the other direction of a square lattice. The continuous variables ϕ assume values from $-\infty$ to ∞. The analogue of the spin-spin correlation function in the $X Y$ model for a strip of width n on a cylinder is given by

$$
\begin{equation*}
\langle\cos \phi(0) \cos \phi(r)\rangle \sim r^{-2 x} \mathrm{e}^{-A_{1} r / n} . \tag{5}
\end{equation*}
$$

Here we assume that the strip is infinite in the direction of K_{1} and also that r points along this direction. The exponent and amplitude in (5) are

$$
\begin{equation*}
x=1 / 4 \pi\left(K_{1} K_{2}\right)^{1 / 2} \quad \text { and } \quad A_{1}=1 / 2 K_{1} . \tag{6}
\end{equation*}
$$

Equations (5) and (6) follow from (20) of Cardy and Nightingale (1983), the generalisation of which to anisotropic interactions is straightforward. Since (5) and (6) also hold with K_{1} and K_{2} interchanged, one finds

$$
\begin{equation*}
A \equiv\left(A_{1} A_{2}\right)^{1 / 2}=2 \pi x \tag{7}
\end{equation*}
$$

where A_{2} is the amplitude of the inverse correlation length when K_{2} is in the infinite direction. This is the generalisation to anisotropic lattices of equation (2).

For the case that the strip makes an arbitrary angle θ with the direction of K_{1}, we may make use of known properties of the Gaussian model in continuous space. After a transformation to a coordinate system with the y axis parallel to the infinite direction, and a Fourier transformation, a cross term proportional to the wavenumbers k_{x} and k_{y} appears. Since $k_{x}=0$ is the dominant term, the cross term vanishes and it follows immediately that

$$
\begin{equation*}
A_{\theta}=2 \pi x /\left(\sqrt{A_{2} / A_{1}} \cos ^{2} \theta+\sqrt{A_{1} / A_{2}} \sin ^{2} \theta\right) \tag{8}
\end{equation*}
$$

Equations (7) and (8) were derived for the Gaussian model. However, their validity extends to all critical models in the Gaussian universality class, which includes almost all known two-dimensional models (see e.g. Kadanoff and Brown 1979, Knops 1980 and den Nijs 1981 and references therein). This is shown by the following argument.

Finite-size scaling can be derived from renormalisation group theory, assuming that $1 / n$ is an additional scaling field (Suzuki 1977, Blöte and Nightingale 1982). To be precise, the assumption is that, if corrections to scaling are ignored, the renormalisation group equations of the finite system are the same as those of the system in the thermodynamic limit; the scaling of $1 / n$ is an immediate consequence of the length rescaling under renormalisation. Equation (1) follows if the only non-zero, relevant scaling field is $1 / n$. Also, the universality of the amplitude A is obtained from this assumption; i.e. the presence of non-zero irrelevant scaling fields shows up only in
corrections to scaling of the $1 / n$ behaviour of the inverse correlation length. Finally, the argument is completed by observing that models within the same universality class differ only by the values of the irrelevant scaling fields.

Note that A in (5) is a universal amplitude, while in general only ratios of amplitudes are universal. This is a consequence of the fact that physical parameters couple to scaling fields in a system-dependent way, and this is where $1 / n$ is an exception. Generally, unknown constants are introduced into amplitudes, and these cancel only in suitably chosen amplitude ratios.

The discussion above holds for correlations of operators which can be identified with spin-wave operators in the Gaussian model. It also applies to the case of the dual vortex operators, but not necessarily to the mixed spin-wave-vortex case. We shall treat various different operators below; indices will be used to identify the associated amplitudes and anomalous dimensions.

From the assumption that, with respect to critical behaviour, lattice and continuum models differ only in an irrelevant way (in the renormalisation group sense) it follows that equation (8) for the general strip orientation is valid also for lattice models. Furthermore, we expect its validity to extend to general lattices such as honeycomb or triangular. The angle θ is then defined with respect to one of the principal directions. These generically depend in an unknown way on the anisotropic interactions.

Spin-spin correlations in the Ising model canot be related in any obvious way to correlations in the Gaussian model that are of simple spin-wave or vortex type. Therefore our derivation does not apply directly to this case. Yet (7) does hold for this model, as we now show. Again the two interaction constants in the square lattice are denoted by K_{1} and K_{2}. A straightforward calculation, starting from the exact solution of Onsager (see e.g. Domb 1960), gives

$$
\begin{equation*}
A_{1 \mathrm{~m}}=\frac{1}{4} \pi\left(\sinh 2 K_{2} / \sinh 2 K_{1}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

for the amplitude of the inverse correlation length in the K_{1} direction. At criticality one has $\left(\exp 2 K_{1}-1\right)\left(\exp 2 K_{2}-1\right)=2$. Interchanging subindices 1 and 2 , we find that $A_{1 \mathrm{~m}}$ and $A_{2 \mathrm{~m}}$ indeed satisfy (7), since x_{m}, the anomalous dimension of the order parameter, equals $\frac{1}{8}$.

Equation (9) was obtained for the correlation length in the Ising model associated with spin-spin correlations. The largest and second-largest eigenvalues of the transfer matrix are the ones that appear in the expression for this length. They are found in the sectors which are respectively even and odd under spin inversion. In the case of energy-energy correlations the pertinent eigenvalues are both in the even sector. Again from the exact solution one finds

$$
\begin{equation*}
A_{1 \mathrm{~T}}=2 \pi\left(\sinh 2 K_{2} / \sinh 2 K_{1}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

in agreement with (7) and $x_{\mathrm{T}}=1$ for the anomalous dimension of the energy. The independence of anisotropy of the ratio $A_{1 \mathrm{~m}} / A_{1 \mathrm{~T}}$ is likely to be a universal feature.

Next we present the results of numerical calculations. First we consider the symmetric eight-vertex, or Baxter, model (Baxter 1972). Formulated in terms of Ising spins $s_{i}= \pm 1$, the reduced Hamiltonian of this model reads

$$
\begin{equation*}
\mathscr{H}=K_{2} \sum_{(i, j)} s_{i} s_{j}+K_{4} \sum_{(i, j, k, l)} s_{i} s_{j} s_{k} s_{l}, \tag{11}
\end{equation*}
$$

the first sum being over next-nearest-neighbour bonds on a square lattice, the second over elementary plaquettes. There are three relevant exponents: the thermal
anomalous dimension x_{T}; and x_{m} and x_{p}, which pertain to magnetisation and polarisation. They are given by Baxter (1972), Barber and Baxter (1973), Baxter and Kelland (1974) and Baxter (1980):

$$
x_{\mathrm{T}}=(2 / \pi) \cos ^{-1} \tanh 2 K_{4}, \quad x_{\mathrm{p}}=\frac{1}{4} x_{\mathrm{T}}, \quad x_{\mathrm{m}}=\frac{1}{8} . \quad(12 a, b, c)
$$

We found the associated amplitudes $A_{\mathrm{T}}, A_{\mathrm{m}}$ and A_{p} of the inverse correlation lengths from the ratios of the largest eigenvalue of the transfer matrix and the largest subdominant eigenvalues belonging to eigenvectors which have the following symmetry properties. In the magnetic case the desired eigenvector is odd under spin inversion. Similarly, A_{p} is obtained by imposing oddness under polarisation inversion, i.e. by flipping a sublattice of next-nearest-neighbour spins. The eigenvector associated with the thermal amplitude A_{T} is even under both of these transformations.

Figures $1(a),(b)$ and (c) are plots of $n \kappa_{n}-A$ against x_{T} for $n=4,6, \ldots, 16$, where A is obtained from the relations (7) and (12). The poor convergence at both extremes of x is to be expected in view of previous calculations (Nightingale 1977). In table 1 extrapolated estimates of the amplitudes are compared with the conjectured exact values. Assuming power law convergence according to $A=n \kappa_{n}+c n^{b}$, estimates of A can be obtained from three consecutive values of κ_{n} (Blöte and Nightingale 1982). Such three-point fits were made to the values obtained for $n=12,14$ and 16. The results clearly indicate that in the Baxter model equation (7) is satisfied for the thermal, magnetic and polarisation amplitudes.

Figure 1. The difference between the calculated and conjectured exact amplitudes $A_{\mathrm{T}}(a), A_{\mathrm{m}}(b)$, and $A_{\mathrm{p}}(c)$ as a function of x_{T} in the Baxter model for $n=4,6, \ldots, 16$.

Table 1. Three-point ($n=12,14,16$) extrapolated estimates (where possible) of the temperature, magnetic and polarisation amplitudes are compared with the conjectured exact values, obtained on the basis of Baxter's exact results, for various values of the four-spin interaction of the Baxter model.

K_{4}	A_{T}	Exact	$\boldsymbol{A}_{\mathrm{m}}$	Exact	$\boldsymbol{A}_{\mathrm{p}}$	Exact
-0.8					2.7249	2.7432
-0.4					2.2972	2.2970
-0.2	7.8409	7.8422	0.7867	0.7854	1.9607	1.9605
-0.1	7.0788	7.0779	0.7855	0.7854	1.7696	1.7695
0.0	6.2839	6.2832	0.7855	0.7854	1.5710	1.5708
0.1	5.4892	5.4885	0.7855	0.7854	1.3723	1.3721
0.2	4.7248	4.7242	0.7854	0.7854	1.1812	1.1811
0.4	3.3781	3.3784	0.7856	0.7854	0.8447	0.8446
0.8	1.5919	1.5937	0.7857	0.7854	0.3975	0.3984

The next model for which we present numerical results is the continuous q-state Potts model, again on the square lattice. We used the formulation of the model as a Whitney polynomial (Kasteleyn and Fortuin 1969, Baxter 1973). The correlation lengths were computed by employing a transfer matrix as introduced in previous finite-size calculations for the Potts model (Blöte et al 1981, Blöte and Nightingale 1982). For the thermal amplitude A_{T} we made use of the transfer matrix of the simple Whitney polynomial (i.e. no ghost site included). The case of the magnetic amplitude A_{m} was treated with the extended polynomial (i.e. including a ghost site).

The thermal and magnetic exponents of the Potts model are given by the generally accepted conjectures (den Nijs 1979, Nienhuis et al 1980, Pearson 1980, den Nijs 1981, Black and Emery 1981, Nienhuis 1982a, den Nijs 1983)

$$
\begin{equation*}
x_{\mathrm{T}}=3 / x-1, \quad x_{\mathrm{m}}=\left(1-y^{2}\right) / 4 x \tag{13a,b}
\end{equation*}
$$

with $x=2-y$ and $\cos (\pi y / 2)=\frac{1}{2} \sqrt{q}$.
In figures $2(a, b)$ we show the differences $n \kappa_{n}-A$ of the estimated and exact values of the amplitudes against x_{T}. This was done for $n=2,3, \ldots, 10$ and $n=2,3, \ldots, 8$

Figure 2. The difference between the calculated and conjectured exact amplitudes $A_{\mathrm{T}}(a)$, and $A_{\mathrm{m}}(b)$ as a function of x_{T} in the Potts model for $n=2,3, \ldots, 10$ (thermal) and $n=2,3, \ldots, 8$ (magnetic).
in the thermal and magnetic cases respectively. Results for A_{T} of three-point extrapolations are shown in table 2. For the magnetic case, we also checked relation (7) for anisotropic lattices. Table 3 contains the extrapolated results. As in the Baxter model, the numerical results agree with equation (7).

Table 2. Three-point ($n=8,9,10$) extrapolated estimates of the temperature amplitude A_{T} are compared with the conjectured exact results for various values of the number of states q of the Potts model.

q	A_{T}	Exact
0.0625	11.193	11.174
0.95	7.973	7.953
1.05	7.775	7.758
2.00	6.284	6.283
4.00	3.240	3.142

Table 3. Three-point ($n=6,7,8$) extrapolated estimates of the magnetic amplitude A_{m}. For different values of the anisotropy $\left(\mathrm{e}^{K_{2}}-1\right) /\left(\mathrm{e}^{K_{1}}-1\right)$, the geometric mean A_{m} of $A_{1 \mathrm{~m}}$ and $A_{2 \mathrm{~m}}$ is compared with the conjectured exact results for various values of the number of states q of the Potts model.

Anisotropy	$\sqrt{2}$		2		4		1	Exact
q	$\boldsymbol{A}_{1 \mathrm{~m}}$	$A_{\text {m }}$	$A_{1 \mathrm{~m}}$	$A_{\text {m }}$	$A_{1 \mathrm{~m}}$	$A_{\text {m }}$	$A_{\text {m }}$	
0.0625	0.26319	0.22290	0.31078	0.22289	0.43321	0.22275	0.22290	0.22287
0.25			0.55155	0.40039			0.40041	0.40032
0.95			0.87127	0.64443			0.64449	0.64432
1.05			0.89657	0.66429			0.66435	0.66418
2.00	0.90752	0.78594	1.04817	0.78589	1.39879	0.78488	0.78594	0.78540
3.00			1.11592	0.84282			0.84277	0.83776
4.00			1.13221	0.85724			0.85697	0.78540

Finally we also applied analogous numerical techniques to the N-component cubic model on an $n \times \infty$ strip. The reduced Hamiltonian is a sum over all pairs of nearestneighbour sites of a square lattice

$$
\begin{equation*}
\mathscr{H}=K \sum_{(i, j)} \sigma_{i} \cdot \sigma_{j}, \tag{14}
\end{equation*}
$$

where the σ are discrete vectors of unit length and $2 N$ possible orientations: parallel or antiparallel to N Cartesian axes. We (Blöte and Nightingale, to be published) constructed a transfer matrix for this model which treats N as a continuous parameter. A thermal correlation length (analogous to the one of the simple Whitney model mentioned above) was calculated for linear system sizes up to $n=8$, and for $N=$ $\frac{1}{64}, \frac{1}{32}, \ldots, \frac{1}{2}$ ($N=1$ and $N=2$ reduce to Ising models). Critical couplings were obtained by scaling of the correlation length (see e.g. Nightingale 1982). The results showed good apparent convergence; estimates are shown in table 4. These data were used to compute the amplitude A_{T}. Again, the apparent convergence is good, and the results together with conjectured exact values are listed in table 4 . The exact numbers were

Table 4. Finite-size results for the critical coupling strength and for the amplitude of the N -component cubic model. Differences from the conjectured exact amplitude are of the same order as numerical uncertainties due to extrapolation.

N	K_{c}	A_{T}	Exact
$\frac{1}{64}$	0.005935	4.241	4.217
$\frac{1}{32}$	0.01189	4.269	4.245
$\frac{1}{16}$	0.02391	4.325	4.301
$\frac{1}{8}$	0.04829	4.439	4.414
$\frac{1}{4}$	0.09846	4.672	4.647
$\frac{1}{2}$	0.2046	5.167	5.138

obtained from (7) and a conjecture of Cardy and Hamber (1980, see also Nienhuis 1982b), according to which the thermal anomalous dimension reads ($-2<N<2$)

$$
\begin{equation*}
x_{\mathrm{T}}=4 \pi /\left[2 \pi-\cos ^{-1}(-N / 2)\right]-2 . \tag{15}
\end{equation*}
$$

The agreement between estimated and conjectured results is close. Assuming, in view of the evidence presented above for other models, that (7) holds for the cubic model, this implies a verification of the exponent conjecture. We also mention that independent calculation of x_{T} from temperature derivatives of free energy and correlation length agrees with the above results to within a few parts in one hundred, consistent with apparent uncertainties in the extrapolation procedures.

In conclusion, all our results, both analytic and numerical, support equation (7), which establishes a relation between finite-size amplitudes of inverse correlation lengths associated with correlations of various types of operators and the corresponding anomalous dimensions.

Instructive conversations with Alma Johnson, Marcel den Nijs, John Rehr, Michael Schick, David Thouless, Bernard Derrida and Henk Hilhorst are kindly acknowledged.

This work was supported in part by the US National Science Foundation under grant no DMR-79-20785, by the Dutch 'Stichting voor Fundamenteel Onderzoek der Materie', and by the Einstein Center for Theoretical Physics, Weizmann Institute of Science, Israel.

References

Barber M N and Baxter R J 1973 J. Phys. C: Solid State Phys. 62913
Baxter R J 1972 Ann. Phys. 70193

- 1973 J. Phys. C: Solid State Phys. 6 L445
-_ 1980 in Fundamental Problems in Stat. Mech. V ed E G D Cohen (Amsterdam: North-Holland)
Baxter R J and Kelland S B 1974 J. Phys. C: Solid State Phys. 7 L403
Black J L and Emery V J 1981 Phys. Rev. B 23429
Blöte H W J and Nightingale M P 1982 Physica 112A 405
Blöte H W J, Nightingale M P and Derrida B 1981 J. Phys. A: Math. Gen. 14 L45
Cardy J L and Hamber H W 1980 Phys. Rev. Lett. 45499
Cardy J L and Nightingale M P 1983 Phys. Rev. B 274256
Derrida B and de Seze J 1982 J. Physique 43475
Domb C 1960 Adv. Phys. 9191
Kadanoff L P and Brown A C 1979 Ann. Phys. 121318

Kasteleyn P W and Fortuin C M 1969 J. Phys. Soc. Japan 46 (suppl) 11
Knops H J F 1980 Ann. Phys. 128448
Luck J M 1982 J. Phys. A: Math. Gen. 15 L169
Nienhuis B 1982a J. Phys. A: Math. Gen. 15199

- 1982b Phys. Rev. Lett. 491062

Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A: Math. Gen. 13 L189
Nightingale M P 1977 Phys. Lett. 59A 486

- 1982 J. Appl. Phys. 537927
den Nijs M P M 1979 J. Phys. A: Math. Gen. 121857
- 1981 Phys. Rev. B 236111

1983 Phys. Rev. B 271674
Pearson R B 1980 Phys. Rev. B 222579
Suzuki M 1977 Prog. Theor. Phys. 581142
Thouless D J 1982 Private communication

