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LETTER TO THE EDITOR 
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finite-size scaling 
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t Department of Physics, FM-15, University of Washington, Seattle, Washington 98195, 
USA 
$ Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft, PO Box 
5046, 2600GA Delft, The Netherlands 

Received 25 August 1983 

Abstract. The relation between critical exponents and the amplitude of the correlation 
length divergence at the critical point of two-dimensional systems as a function of finite 
size is investigated and generalised in two ways. Correlations more general than those of 
order-order type are included. A form appropriate for anisotropic systems is proposed. 
We present (a) exact results for the Ising and Gaussian models and (b) numerical results 
for the symmetric eight-vertex (Baxter), continuous q-state Potts, and continuous N -  
component cubic models. 

In this letter we consider two-dimensional lattices, infinite in one direction and of finite 
size n in the other. Denote by K ,  the inverse correlation length, in the sense defined 
below, of the system in the infinite direction. Suppose that all parameters such as 
temperature and symmetry-breaking field are set to the critical values of the truly 
infinite system. If we furthermore assume the case of a continuous transition, then K ,  

behaves for large n as 

K ,  = A/ n. 

The divergence of the correlation length as shown by this equation is a fundamental 
feature of a phase transition. In numerical studies in critical phenomena, accurate 
estimates of critical properties can be derived from the behaviour of the correlation 
length as a function of system size with the help of finite-size scaling or phenomenologi- 
cal renormalisation (Nightingale 1982 and references therein). 

In a study of the two-dimensional XY model Luck (1982) derived the remarkable 
relation(( 

A = 2 m ,  (2) 
where x ,  the anomalous dimension, is the exponent which describes how the spin-spin 
correlation function g of the infinite system at criticality decays as a function of distance 
1: 

g ( r )  - f-? (3) 
B Address as from September 1,1983: Department of Physics, University of Rhode Island, Kingston, Rhode 
Island 02881, USA. 
11 This relation was first demonstrated by J L Pichard and G Farma (1981 J.  Phys. C: Solid Stare Phys. 14 
L617) in the case of Anderson localisation. 
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Using (2), one need only calculate A to find x;  no derivatives of K ,  are required as 
in the more usual finite-size scaling procedure. Equation (2) has been numerically 
verified for the spin-spin correlation function of the q-state Potts model in two 
dimensions (Derrida and de Seze 1982). Results were published only for two special 
cases: percolation and the Ising model, i.e. q = 1 and q = 2. 

Luck’s result, equation (2), can be reproduced easily (Thouless 1982) with the 
spin-wave approximation to the two-dimensional X Y  model, i.e. the Gaussian model 
As it stands (2) applies to isotropic models only. To investigate the effect of anisotropy 
we explicitly consider the anisotropic Gaussian model. The reduced Hamiltonian (i.e. 
with a factor - l /kBT included) for this model is 

where the first sum is over all nearest-neighbour bonds in one direction and the second 
sum is the same in the other direction of a square lattice. The continuous variables 4 
assume values from -CO to CO. The analogue of the spin-spin correlation function in 
the X Y  model for a strip of width n on a cylinder is given by 

(cos 4(0) cos 4 ( r ) ) -  r-’, e-A1r’n. ( 5 )  
Here we assume that the strip is infinite in the direction of K1 and also that r points 
along this direction. The exponent and amplitude in ( 5 )  are 

x = ~ / ~ T ( K ~ K ~ ) ’ / ~  and A l  = 1/2K1. ( 6 )  
Equations ( 5 )  and (6) follow from (20) of Cardy and Nightingale (1983), the generalisa- 
tion of which to anisotropic interactions is straightforward. Since ( 5 )  and ( 6 )  also hold 
with K1 and K2 interchanged, one finds 

A =  (A1A2)1/2=27rx, (7) 
where A2 is the amplitude of the inverse correlation length when K2 is in the infinite 
direction. This is the generalisation to anisotropic lattices of equation (2).  

For the case that the strip makes an arbitrary angle 6 with the direction of K1, we 
may make use of known properties of the Gaussian model in continuous space. After 
a transformation to a coordinate system with the y axis parallel to the infinite direction, 
and a Fourier transformation, a cross term proportional to the wavenumbers k, and 
k, appears. Since k, = 0 is the dominant term, the cross term vanishes and it follows 
immediately that 

A , = 2 . r r x / ( ~ c o s 2  6+JA1/Azs in2  6). (8) 
Equations (7) and (8)  were derived for the Gaussian model. However, their validity 

extends to all critical models in the Gaussian universality class, which includes almost 
all known two-dimensional models (see e.g. Kadanoff and Brown 1979, Knops 1980 
and den Nijs 1981 and references therein). This is shown by the following argument. 

Finite-size scaling can be derived from renormalisation group theory, assuming 
that l / n  is an additional scaling field (Suzuki 1977, Blote and Nightingale 1982). To 
be precise, the assumption is that, if corrections to scaling are ignored, the renormalisa- 
tion group equations of the finite system are the same as those of the system in the 
thermodynamic limit; the scaling of l / n  is an immediate consequence of the length 
rescaling under renormalisation. Equation ( 1 )  follows if the only non-zero, relevant 
scaling field is l ln .  Also, the universality of the amplitude A is obtained from this 
assumption; i.e. the presence of non-zero irrelevant scaling fields shows up only in 
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corrections to scaling of the 1/ n behaviour of the inverse correlation length. Finally, 
the argument is completed by observing that models within the same universality class 
differ only by the values of the irrelevant scaling fields. 

Note that A in (5) is a universal amplitude, while in general only ratios of amplitudes 
are universal. This is a consequence of the fact that physical parameters couple to 
scaling fields in a system-dependent way, and this is where l / n  is an exception. 
Generally, unknown constants are introduced into amplitudes, and these cancel only 
in suitably chosen amplitude ratios. 

The discussion above holds for correlations of operators which can be identified 
with spin-wave operators in the Gaussian model. It also applies to the case of the 
dual vortex operators, but not necessarily to the mixed spin-wave-vortex case. We 
shall treat various different operators below; indices will be used to identify the 
associated amplitudes and anomalous dimensions. 

From the assumption that, with respect to critical behaviour, lattice and continuum 
models differ only in an irrelevant way (in the renormalisation group sense) it follows 
that equation (8)  for the general strip orientation is valid also for lattice models. 
Furthermore, we expect its validity to extend to general lattices such as honeycomb 
or triangular. The angle 6 is then defined with respect to one of the principal directions. 
These generically depend in an unknown way on the anisotropic interactions. 

Spin-spin correlations in the Ising model canot be related in any obvious way to 
correlations in the Gaussian model that are of simple spin-wave or vortex type. 
Therefore our derivation does not apply directly to this case. Yet (7) does hold for 
this model, as we now show. Again the two interaction constants in the square lattice 
are denoted by K, and K2. A straightforward calculation, starting from the exact 
solution of Onsager (see e.g. Domb 1960), gives 

AI, = a.rr(sinh 2K,/sinh 2K1)1’2 (9) 

for the amplitude of the inverse correlation length in the K1 direction. At criticality 
one has (exp 2K1 - l)(exp 2K2- 1) = 2. Interchanging subindices 1 and 2, we find that 
Al, and A2, indeed satisfy (7), since x,, the anomalous dimension of the order 
parameter, equals t .  

Equation (9) was obtained for the correlation length in the Ising model associated 
with spin-spin correlations. The largest and second-largest eigenvalues of the transfer 
matrix are the ones that appear in the expression for this length. They are found in 
the sectors which are respectively even and odd under spin inversion. In the case of 
energy-energy correlations the pertinent eigenvalues are both in the even sector. 
Again from the exact solution one finds 

A I = =  2.rr(sinh 2K2/sinh 2K1)”2, (10) 
in agreement with (7) and xT= 1 for the anomalous dimension of the energy. The 
independence of anisotropy of the ratio A1,/AIT is likely to be a universal feature. 

Next we present the results of numerical calculations. First we consider the 
symmetric eight-vertex, or Baxter, model (Baxter 1972). Formulated in terms of Ising 
spins si = *l ,  the reduced Hamiltonian of this model reads 

the first sum being over next-nearest-neighbour bonds on a square lattice, the second 
over elementary plaquettes. There are three relevant exponents: the thermal 
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anomalous dimension xT; and x, and x,, which pertain to magnetisation and polarisa- 
tion. They are given by Baxter (1972), Barber and Baxter (1973), Baxter and Kelland 
(1974) and Baxter (1980): 

We found the associated amplitudes AT, A, and A, of the inverse correlation 
lengths from the ratios of the largest eigenvalue of the transfer matrix and the largest 
subdominant eigenvalues belonging to eigenvectors which have the following symmetry 
properties. In the magnetic case the desired eigenvector is odd under spin inversion. 
Similarly, A, is obtained by imposing oddness under polarisation inversion, i.e. by 
flipping a sublattice of next-nearest-neighbour spins. The eigenvector associated with 
the thermal amplitude AT is even under both of these transformations. 

Figures l (a ) ,  (b)  and (c)  are plots of ~ Z K ,  -A against xT for n = 4 , 6 , .  . . ,16,  where 
A is obtained from the relations (7) and (12). The poor convergence at both extremes 
of x is to be expected in view of previous calculations (Nightingale 1977). In table 1 
extrapolated estimates of the amplitudes are compared with the conjectured exact 
values. Assuming power law convergence according to A = n ~ ,  + crib, estimates of A 
can be obtained from three consecutive values of K ,  (Blote and Nightingale 1982). 
Such three-point fits were made to the values obtained for n = 12, 14 and 16. The 
results clearly indicate that in the Baxter model equation (7) is satisfied for the thermal, 
magnetic and polarisation amplitudes. 

i i i -  
0.4 0.8 1.2 1 6  
i i i -  
0.4 0.8 1.2 1 6  O L  0 8  1 2  1 6  

-0 1 

Xl 

Figure 1. The difference between the calculated and 
conjectured exact amplitudes A, ( a ) ,  A,,, ( b ) ,  and 
A,, (c )  as a function of x, in the Baxter model for 
n = 4 , 6 , .  . . ,16. 
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TaMe 1. Three-point (n = 12, 14, 16) extrapolated estimates (where possible) of the 
temperature, magnetic and polarisation amplitudes are compared with the conjectured 
exact values, obtained on the basis of Baxter’s exact results, for various values of the 
four-spin interaction of the Baxter model. 

K4 AT Exact Am Exact A, Exact 

-0.8 
-0.4 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.4 
0.8 

2.7249 
2.2972 

7.8409 7.8422 0.7867 0.7854 1.9607 
7.0788 7.0779 0.7855 0.7854 1.7606 
6.2839 6.2832 0.7855 0.7854 1.5710 
5.4892 5.4885 0.7855 0.7854 1.3723 
4.7248 4.7242 0.7854 0.7854 1.1812 
3.3781 3.3784 0.7856 0.7854 0.8447 
1.5919 1.5937 0.7857 0.7854 0.3975 

2.7432 
2.2970 
1.9605 
1.7695 
1.5708 
1.3721 
1.1811 
0.8446 
0.3984 

The next model for which we present numerical results is the continuous q-state 
Potts model, again on the square lattice. We used the formulation of the model as a 
Whitney polynomial (Kasteleyn and Fortuin 1969, Baxter 1973). The correlation 
lengths were computed by employing a transfer matrix as introduced in previous 
finite-size calculations for the Potts model (Blote et a1 1981, Blote and Nightingale 
1982). For the thermal amplitude AT we made use of the transfer matrix of the simple 
Whitney polynomial (i.e. no ghost site included). The case of the magnetic amplitude 
A, was treated with the extended polynomial (i.e. including a ghost site), 

The thermal and magnetic exponents of the Potts model are given by the generally 
accepted conjectures (den Nijs 1979, Nienhuis et a1 1980, Pearson 1980, den Nijs 
1981, Black and Emery 1981, Nienhuis 1982a, den Nijs 1983) 

xT= 3/x- 1, x, = ( 1  - y2>/4x (13a, b )  
with x = 2 - y and cos( .rry/2) = &. 

In figures 2(a, b )  we show the differences I ~ K ,  - A of the estimated and exact values 
of the amplitudes against xT. This was done for n = 2,3,. . . , 10 and n = 2 , 3 , .  . . , 8  

’r- 

p: X 0- 

= t  

-21 
0.4 

XT XT 

Fignre 2. The difference between the calculated and conjectured exact amplitudes AT (a) ,  
and A, ( b )  as a function of r, in the Potts model for n = 2, 3 , .  . . , 10 (thermal) and 
n = 2,3, .  . . , 8  (magnetic). 
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in the thermal and magnetic cases respectively. Results for AT of three-point extrapola- 
tions are shown in table 2. For the magnetic case, we also checked relation (7) for 
anisotropic lattices. Table 3 contains the extrapolated results. As in the Baxter model, 
the numerical results agree with equation (7). 

Table 2. Three-point ( n  = 8, 9, 10) extrapolated estimates of the temperature amplitude 
A, are compared with the conjectured exact results for various values of the number of 
states q of the Potts model. 

9 AT Exact 

0.0625 11.193 11.174 
0.95 7.973 7.953 
1.05 7.775 7.758 
2.00 6.284 6.283 
4.00 3.240 3.142 

Table 3. Three-point ( n  = 6, 7, 8) extrapolated estimates of the magnetic amplitude A,. 
For different values of the anisotropy (eK,- l ) / (eKl- l ) ,  the geometric mean A, of AI,  
and Azm is compared with the conjectured exact results for various values of the number 
of states q of the Potts model. 

~~ 

0.0625 0.263 19 0.222 90 0.310 78 0.222 89 0.433 21 0.222 75 0.222 90 
0.25 0.551 55 0.400 39 0.400 41 
0.95 0.871 27 0.644 43 0.644 49 
1.05 0.896 57 0.664 29 0.664 35 
2.00 0.907 52 0.785 94 1.048 17 0.785 89 1.398 79 0.784 88 0.785 94 
3.00 1.115 92 0.842 82 0.842 77 
4.00 1.132 21 0.857 24 0.856 97 

0.222 87 
0.400 32 
0.644 32 
0.664 18 
0.785 40 
0.837 76 
0.785 40 

Finally we also applied analogous numerical techniques to the N-component cubic 
model on an n X 00 strip. The reduced Hamiltonian is a sum over all pairs of nearest- 
neighbour sites of a square lattice 

where the U are discrete vectors of unit length and 2N possible orientations: parallel 
or antiparallel to N Cartesian axes. We (Blote and Nightingale, to be published) 
constructed a transfer matrix for this model which treats N as a continuous parameter. 
A thermal correlation length (analogous to the one of the simple Whitney model 
mentioned above) was calculated for linear system sizes up to n = 8, and for N = 
&, A, . . . , 2  ( N  = 1 and N = 2 reduce to Ising models). Critical couplings were obtained 
by scaling of the correlation length (see e.g. Nightingale 1982). The results showed 
good apparent convergence; estimates are shown in table 4. These data were used to 
compute the amplitude AT. Again, the apparent convergence is good, and the results 
together with conjectured exact values are listed in table 4. The exact numbers were 

1 
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Table 4. Finite-size results for the critical coupling strength and for the amplitude of the 
N-component cubic model. Differences from the conjectured exact amplitude are of the 
same order as numerical uncertainties due to extrapolation. 

N K c  AT Exact 

1 - 64 0.005 935 4.241 4.217 
h 0.011 89 4.269 4.245 
- 16 0.023 91 4.325 4.301 
8 0.048 29 4.439 4.414 
a 0.098 46 4.672 4.647 
t 0.204 6 5.167 5.138 

1 

1 

obtained from (7) and a conjecture of Cardy and Hamber (1980, see also Nienhuis 
1982b), according to which the thermal anomalous dimension reads (-2 < N < 2) 

XT = h / [ 2  -cos-'(-N/2)]- 2. (15) 

The agreement between estimated and conjectured results is close. Assuming, in view 
of the evidence presented above for other models, that (7) holds for the cubic model, 
this implies a verification of the exponent conjecture. We also mention that independent 
calculation of xT from temperature derivatives of free energy and correlation length 
agrees with the above results to within a few parts in one hundred, consistent with 
apparent uncertainties in the extrapolation procedures. 

In conclusion, all our results, both analytic and numerical, support equation (7),  
which establishes a relation between finite-size amplitudes of inverse correlation lengths 
associated with correlations of various types of operators and the corresponding 
anomalous dimensions. 
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